
Chapter 13 

Stochastic or Itô Calculus 

This chapter presents the basic results concerning the Itô calculus also called 
stochastic calculus, one of the main tools used in stochastic finance particularly for 
building stochastic models used in option theory, developed in Chapter 14 and in 
bond evaluation, developed in Chapter 15.  

13.1. Problem of stochastic integration  

In traditional analysis, it is well known that the Riemann-Stieltjes integral noted 

b

a

fd  (13.1) 

is well defined if for example f is continuous and  of bounded variation on ,a b , 
or inversely if  is continuous and f of bounded variation on ,a b . From 
integration by parts, we obtain:  

( ) ( ) ( ) ( ) .
b b

a a

fd f b b f a a df  (13.2) 

Let us work now on a filtered probability space , , , 0 ,t t P  on which 
we define two adapted stochastic processes: 

( ), 0 , ( ), 0f f t t X X t t  (13.3) 
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where the process f  has its trajectories a.s. of bounded variation and the process X  
has its trajectories a.s. continuous on 0, t . 
 

For each trajectory , it is still possible to integrate “à la Riemann-Stieltjes” to 
obtain a new random variable Y 

0

( ) ( )
t

Y f s dX s  (13.4) 

or 

0

( ) ( , ) ( , )
t

Y w f s dX s . (13.5) 

The process f is called the integrand process and the process X the integrator 
process. 
 

So, if process f has its trajectories a.s. of bounded variation and process X has its 
trajectories a.s. continued on 0,T , the stochastic process ( ( ), 0, )Y Y t t T  is 

also represented by fdX  or: 

0

( , ) ( , ), 0,
t

fdX f s dX s t T  (13.6) 

Nevertheless, this approach of stochastic integration is completely unsatisfactory 
if, for example, we are considering a standard Brownian motion, as defined in 
Chapter 10, ( ( ), 0)W W t t  as indeed, we cannot define the following integral 

0

( , ) ( , )
t

W s dW s  (13.7) 

as these trajectories of a Brownian motion are p.s. not of bounded variation on any 
interval [0, t]. That is why it is necessary to construct a new theory of integration 
called the stochastic or Itô integration. 
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In particular, we will see that in this new theory, the “natural” result in 
traditional analysis:  

2

0

1
( , ) ( , ) ( , )

2

t

W s dW s W t ; (13.8) 

is here false! 
 

More generally, the traditional formula of derivation and differentiation will no 
longer be systematically true. 

13.2. Stochastic integration of simple predictable processes and semi-
martingales  

Let  , , , 0 ,t Pt  be a filtered complete probability space, T a stopping 
time and T  the -algebra of all the events anterior to T and introduce the 
following definitions. 
 
Definition 13.1 A stochastic process 

, 0tH H t  (13.9) 

is predictable simple if , 0tH H t if: 

11 0 ,
0

0

(i) 1 ( ) 1 ,

(ii) 0, , 1,...,  is an increasing sequence of a.s. 

finite stopping times,

(iii) 1,..., :  , . .,  H .

i i

i

n

t i T T
i

i

i i t

H H t H

T T i n

i n H p s

 (13.10) 

Definition 13.2 On  , , , 0 ,t Pt , the set of all predictable simple stochastic 
processes is called S and uS  if it is topologized with the uniform convergence in 
( , )t .  
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The basic idea is to define, with a given integrator process X, the stochastic 

integral process noted 

0

HdX  of a simple predictable process H 

0 0

( ) ( )s sHdX H dX  (13.11) 

eventually with the completion of H for 1nt T as 

1( ) 0, . . >t nH p s t T   (13.12) 

as the operator 0:XI S L , this last set being the set of all r.v. with the 
convergence in probability, defined by relation (13.10) such that this operator has 
the following properties:  

(i) XI  is linear:  

1 2 1 2 1 2

0 0 0

, : ( ) ,H H S H H dX H dX H dX  (13.13) 

(ii) XI  is continuous: 

. .. .

0 0

c prc u

n nH H H dX HdX . (13.14) 

We see that the continuity property is well related to the two modes of 
convergence introduced before: the uniform convergence on S and the convergence 
in probability on 0L . 

 
To define now the operator XI  for simple predictable processes, we will follow 

the traditional definition as follows. 
 
Definition 13.3 The operator 0:XI S L , is defined as follows: 

11
0

( ) 1 0 ( )
i i

n

X i T T
i

I H H H X X . (13.15) 

The new problem now is to see what the “good” integrator processes are so that 
this definition has a meaning and satisfies properties (13.13) and (13.14). 
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As from Definition 13.3, it is clear that the linearity property is always fulfilled 
for simple predictable processes. To see for what classes of process it remains true, 
it suffices to obtain property (13.14), justifying the introduction of a large class of 
stochastic processes called semi-martingales. 
 
Definition 13.4 The stochastic process X is a total semi-martingale if: 

(i) X is càdlàg; 

(ii) X is adapted; 

(iii) operator 0:XI S L is continuous. 
 

For the restriction of the integration on the interval [0,t], we give the next 
definition. 
 
Definition 13.5 The stochastic process X is a total semi-martingale if for all 

0,t , the stopped process at t, tX defined by 

, ,

, .
st

s
t

X s t
X

X s t
 (13.16) 

is a total semi-martingale. 
 

It is now possible to prove that this class of stochastic processes is good enough 
for stochastic integration with the following theorem proved by Protter (1990). 
 
Proposition 13.1 

(i) Every adapted càdlàg process of bounded variation on all compacts is a semi-
martingale. 

(ii) Every càdlàg square integrable martingale g is a semi-martingale. 

(iii) Every standard Brownian motion is a semi-martingale. 
 
Proof Let us prove (ii) and (iii). 

(ii) From Definition 13.3 and relation (13.15), we obtain: 

1

2
2

0

( )
i i

n

X i T T
i

E I H E H X X . (13.17) 
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As the double products have a zero expectation, we obtain: 

1

22 2

0

( )
i i

n

X i T T
i

E I H E H X X  (13.18) 

and so 

1

22 2

0

( ) sup .
i i

n

X i T T
i i

E I H H E X X  (13.19) 

Using the smoothing property of conditional expectation and the stopping time 
theorem of Doob (see Chapter 10), we can successively write: 

1 1
,

i i i i iT T T T TE X X E E X X  (13.20) 

1 1
,

i i i i iT T T T TE X X E X E X  (13.21) 

1

2 ,
i i iT T TE X X E X  (13.22) 

and so from relation (13.15): 

1

2 2 2 2 2

0

( ) sup 2
i i i

n

X i T T T
i i

E I H H E X E X E X  (13.23) 

or: 

1

2 2 2 2

0

( ) sup
i i

n

X i T T
i i

E I H H E X E X . (13.24) 

This last result finally gives:  

1

2 2 2 2
0( ) sup

iX i T
i

E I H H E X E X  (13.25) 

which proves the continuity property of operator XI . 

(iii) This result is a direct consequence of the property that every standard 
Brownian motion is a square integrable and càdlàg martingale (see Chapter 10) with 
trajectories a.s. continuous.  
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13.3. General definition of the stochastic integral  

Let us now go to the last step of stochastic integration, that is, to define this 
concept for more general processes than the predictable simple processes. To do so, 
we must introduce a class of stochastic processes we can obtain using an adequate 
convergence using a technique similar to the construction of real numbers from the 
rational numbers or the construction of the integral of measurable functions starting 
from the integral of simple functions. 
 

The basic idea, fully developed in Protter (1990), is always the same one. Firstly, 
we define a larger class of integrable functions on which the initial class is dense. 
Secondly, we approach each element of the new class with a sequence of elements 
of the initial class using an adequate mode of convergence, i.e. the punctual 
convergence in number theory, the uniform convergence in traditional integration 
and here the uniform convergence in probability on every compact set. 
 
Definition 13.6 (The uniform convergence in probability on every compact set) A 

sequence of stochastic processes , 1nH n  where , 0n n
tH H t  converges 

uniformly in probability on the compacts towards the process , 0tH H t  if, 

for all t>0, we have: 

0
sup 0prs

n s
s t

H H .  (13.26) 

So, we now have four basic spaces of topologized stochastic processes: 

D: the space of càdlàg simple adapted processes; 

L: the space of adapted càdlàg processes; 

uS : the space of predictable simple processes with the uniform convergence; 
0L : the space of finite random variables with the convergence in probability.  

 
The spaces of stochastic processes D, L and S with the uniform convergence in 

probability on the compacts are noted respectively , , .ucp ucp ucpD L S  
 

We have now the following result. 
 
Proposition 13.2 (Protter (1990)) With the uniform convergence in probability on 
the compacts, space S of predictable simple processes is dense on L. 
 

This result leads to the extension of the definition of stochastic integral from S to L.  
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Firstly, let us recall that the application 

0:X uI S L  (13.27) 

defined from relation (13.10) is written in the following form: 

0

( )X s sI H H dX  (13.28) 

and with the stopped process tX :  

0

( )t

t

s sXI H H dX  (13.29) 

For a given stochastic process H, this last relation defines a new stochastic 
process XJ : 

( ) ( )tX t XJ H I H  (13.30) 

such that for each process , 0tH H t , the corresponding associated process is 

0

, 0
t

s sH dX t  and so 

( )) ( )tX t XJ H I H . (13.31) 

Protter (1990) proved the two following propositions. 
 
Proposition 13.3 If process X is a semi-martingale, then the application 

:X ucp ucpJ S D  (13.32) 

is continuous. 
 
Proposition 13.4 The continuous linear operator :X ucp ucpJ S D  can be 
extended to a continuous linear operator :X ucp ucpJ L D . 
 

This last proposition is a special case of the fundamental result that every linear 
operator on a sub-vector space can be extended in a unique way to the whole vector 
space.  
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Definition 13.7 If X is a semi-martingale, the continuous linear application: 

:X ucp ucpJ L D  (13.33) 

is called a stochastic integral.  
 

Of course, we will use the same notations as for simple processes:  

0

( )X s sI H H dX  (13.34) 

0

( ) ,t

t

s sXI H H dX  

( ( )) ( )tX t XJ H I H
 (13.35) 

Thus, the main conclusion is that it is possible to define the stochastic integral on 
[0,t] for every adapted càdlàg process as integrand process and for every semi-
martingale integrator process. 
 
Example 13.1 Let us consider a standard Brownian motion 0tB B  on the 
filtered probability space , , , 0 ,t Pt . 
 

From Proposition 13.1, process B is a semi-martingale and moreover continuous 

(see Chapter 10); it follows that the following stochastic integral 

0

t

s sB dB  exists. 

 
To calculate its value, let us introduce the following sequence of nested partitions 

, 1n n  of [0,t] such that the sequence of these norms , 1n n  tends to 0. 
 

For every partition n , we introduce the following simple function nB  defined 
as follows: 

1

1

( , ]
0

1 ,
k k k

n
n
s t t t

k

B B  (13.36) 

with 

0 0( ,..., ,..., ), 0, .n k n nt t t t t t    (13.37) 
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From the definition of the stochastic integral of simple functions, we obtain:  

1

1

00

.
k k k

t n
n
s s t t t

k

B dB B B B   (13.38) 

Using the theorem of the approximation of every continuous function by a 
uniformly convergent sequence of step functions, we have on [0,t]: 

ucp
nB B  (13.39) 

and so: 

1

1

0
00

lim .
k k k

n

t n

s s t t t
k

B dB B B B   (13.40) 

As 

1 1 1 1

1 1 2

0 0

1

2k k k k k k k k k

n n

t t t t t t t t t
k k

B B B B B B B B B , (13.41) 

or even 

1 1

1 1 22

0 0

1 1

2 2k k k k k

n n

t
k k

B B B B B B , (13.42) 

we obtain: 

1

1
2 2

0
00

1 1
lim ( )

2 2 k k
n

t n

s s t t t
k

B dB B B B  (13.43) 

The final result comes from the application of the next proposition showing that 
the second term of this last relation tends towards t/2 and so:  

2

0

1 1
.

2 2

t

s s tB dB B t   (13.44) 

This last result illustrates well the fact that the traditional formula of differential 
analysis is, in general, no more true for the Itô calculus; here, in result (13.44), there 
is a supplementary term -t/2 with respect to the traditional formula, called the drift.  
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Let us now prove the previous result. 
 
Proposition 13.5 For any standard Brownian motion we have, with the convergence 
in probability: 

1 1

1
2

0
0

lim ( ) .
k k

n

n

t t
k

B B t  (13.45) 

Proof With 

0 0( ,..., ,..., ), 0, ,n k n nt t t t t t  

let us define: 

1

1
2

.
0

( )
k k

n

t t n
k

B B S . (13.46) 

From the identity 

1 1

1
2

1
0

( ) ( ) ,
k k

n

n t t k k
k

S t B B t t  (13.47) 

we obtain:  

1 1

21
2 2

1
0

[ ] ( ) ( ) ,
k k

n

n t t k k
k

E S t E B B t t  (13.48) 

using the property that a standard Brownian motion has independent increments (see 
Chapter 10):  

1 1

21
2 2

1
0

[( ) ] ( ) ( ) .
k k

n

n t t k k
k

E S t E B B t t  (13.49) 

Consequently, it follows that: 

1 1

221
2 2

1
10

[( ) ] 1 ( ) .k k

n
t t

n k k
k kk

B B
E S t E t t

t t
 (13.50) 
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Let us now introduce the r.v. 

1

1

k kt t
k

k k

B B
Y

t t
 (13.51) 

having a N(0,1) distribution (see Chapter 1) to write relation (13.50) in the form: 

21
2 2 2

1
0

21
2 2

1
0

[( ) ] 1 ( ) ,

                  1 ( ) .

n

n k k k
k

n

k k k
k

E S t E Y t t

E Y t t

 (13.52) 

As the r.v. kY have the same distribution, we also obtain: 

1
2 2 2 2

1 1
0

[( ) ] ( 1) ( ) .
n

n k k
k

E S t E Y t t  (13.53) 

From the following inequality: 

1
2

1
0

( )
n

k k n
k

t t b a  (13.54) 

we obtain: 

2 2 2
1[( ) ] ( 1) ( ) ,n nE S t E Y b a  (13.55) 

and so the result for 0.n    
 
Remark 13.1 The last proposition also shows that effectively the trajectories of a 
standard Brownian motion are not, a.s., of bounded variation on any compact of the 
real set.  
 

Indeed, from the a.s. continuity of the trajectories on [0,t], there is on this 
interval a subdivision 0 0,..., ,..., , 0,n k n nt t t t t t  of sufficiently small norm 
such that: 

1 1
1, 0,..., 1

k kt tB B k n  (13.56) 
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and so: 

1 1 1

1 1
2

0 0

( ) sup
k k k k k k

n n

t t t t t t
kk k

B B B B B B . (13.57) 

This last relation proves that if the trajectories of a standard Brownian motion 
were a.s. of bounded variation on [0,t], then the first member will tend to 0, which is 
in contradiction with Proposition 13.5.  

13.4. Itô’s formula 

The fact that the rules of traditional differential calculus are no longer true for 
stochastic calculus implies finding a new tool of differentiation and integration. This 
tool was created by Itô (1944) who proved a lemma called Itô’s lemma whose main 
result is called Itô’s formula. 

 
This formula became a very important basic tool for stochastic calculus and 

particularly in stochastic finance. 

13.4.1. Quadratic variation of a semi-martingale 

Let us recall that we use the following notations: 

0 0,

0 0,

,
t

s s s s
t

t

s s s s
t

H dX H dX

H dX H dX

 (13.58) 

and so: 

0 0

0 0

.
t t

s s s sH dX H X H dX  (13.59) 

Definition 13.8 If X and Y are two semi-martingales, then:  

(i) the quadratic variation of X or bracket of X noted: 

, , , 0
t

X X X X t  (13.60) 
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is the stochastic process 

2

0

0

, 2 ,

( 0),

t

t t st
X X X X dX

X
 (13.61) 

(ii) the quadratic covariation process of X and Y or bracket of X and Y is the 
stochastic process noted  

, , , 0
t

X Y X Y t   (13.62) 

where 

0 0
, .

t t

t t s s s st
X Y X Y X dY Y dX    (13.63) 

Protter (1990) proved some interesting properties of these new processes and the 
most important ones for us are presented in the next proposition. 
 
Proposition 13.6 

(i) The process [X,X] is càdlàg, non-decreasing and adapted. 

(ii) The process [X,Y] is càdlàg, t bilinear and symmetric and: 

1
, , , , .

2t t t t
X Y X Y X Y X X Y Y  (13.64) 

(iii) For every sequence of partitions of stopping times:  

0 10, ,..., ,..., ,n n n n
k nT T T T t  (13.65) 

if norm tends a.s. to 0, then: 

1

21
2
0

0

, .
n n

k k

n
T T

ucp
k

X X X X X   (13.66) 

(iv) X and Y being two semi-martingale, so is the process [X, X]. 

(v) Integration by parts asserts that: 

0 0
, .

t t

t t s s s s t
X Y X dY Y dX X Y  (13.67) 
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(vi) If it is a process of class D, then the jump process of Y, denoted 
( , 0)tY Y t , is defined as 

t t tY Y Y . (13.68) 

Then, for X=Y, we have: 

2, tt
X X X , (13.69) 

it follows the non-decreasing property of [X,X] and its decomposition in 

2

0

, , ,c
st t

s t

X X X X X   

or  (13.70) 
 

22
0

0

, , ,c
st t

s t

X X X X X X  
 
the first term representing the “continuous” part of [X,X] . 
 
Remark 13.2 From (ii) and Proposition (13.5), it follows that for every standard 
Brownian motion: 

, .
t

B B t  (13.71) 

13.4.2. Itô’s formula 

In traditional differential calculus, it is well-known that the fundamental theorem 
asserts that for any integrable function f on [0,t], we have: 

0
0( ) ( ) '( ) .

x

x
f x f x f t dt  (13.72) 

From stochastic calculus, the problem is as follows: with a semi-martingale 
process X as integrator process, we seek the additional term, if it exists, such that we 
can extend the preceding result (13.72) to obtain the following extension: 

0
0

( ) ( ) '( ) ....
t

t s sf X f X f X dX  (13.73) 

For any function f of class 2C , the solution is given by the two next propositions. 
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Proposition 13.7 (general Itô formula) If X is a semi-martingale and f a function of 
class 2C , then the composed process ( ) ( ), 0tf X f X t  is also a semi-
martingale and moreover: 

0
0 0

0

1
( ) ( ) '( ) '( ) ,

2

( ) ( ) '( ) .

t t c
t s s s s

s s s s
s t

f X f X f X dX f X d X X

f X f X f X X
 (13.74) 

Proposition 13.8 (Itô formula: continuous case) If X is a continuous semi-
martingale and f a function of class 2C , then the composed process 

( ) ( ), 0tf X f X t  is also a semi-martingale and moreover: 

0
0 0

1
( ) ( ) '( ) '( ) , .

2

t t

t s s s s
f X f X f X dX f X d X X  (13.75) 

Proof Relation (13.75) is a direct consequence of result (13.74) as the continuity 
assumption on X implies that: 

0 : , 0s s ss X X X  (13.76) 

Remark 13.3 It is possible to show that (see Protter (1990)) the first supplementary 
term in the general Itô’s formula is nothing other than: 

1
'( ),

2
c
t

f X X  (13.77) 

and so we can put the Itô formula in the form: 

0
0

0

1
( ) ( ) '( ) '( ),

2

( ) ( ) '( ) .

t c
t s s t

s s s s
s t

f X f X f X dX f X X

f X f X f X X
 (13.78) 

13.5. Stochastic integral with standard Brownian motion as integrator process 

Main applications in finance begin with stochastic integrals with a standard 
Brownian motion as integrator process; thus, we will now particularize the general 
preceding results to this special case to obtain results that are more precise. 
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13.5.1. Case of predictable simple processes  

On the probability space  , , , 0 ,t Pt , let us consider: 

– a simple predictable process defined on [0, t]: 

1, < ,k=0,...,n-1,s k k kH H t s t  (13.79) 

0 10, ,..., nt t t t  being a partition of [0,t]; 

– B, a standard Brownian motion. 
 

From the construction of the stochastic integral, we know that:  

1

1

0
0

( )
kk

nt

s s k t t
k

H dB H B B . (13.80) 

Consequently, the mean and variance of the stochastic integral are given by: 

(i) mean: 

1

1

00

)
k k

t n

s s k t t
k

E H dB E H B B , (13.81) 

and as the process H is adapted and B with independent increments, we obtain:  

1

1

00
k k

t n

s s k t t
k

E H dB E H E B B  (13.82) 

and finally: 

0

0.
t

s sE H dB  (13.83) 

(ii) variance 

As from result (13.83): 

1

21

0
0

var ( ) ,
k k

nt

s s k t t
k

H dB E H B B  (13.84) 
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we obtain: 

1 1

1 1

0
0 0

var ( )( ) ,
k k l l

n nt

s s k l t t t t
k l

H dB E H H B B B B  (13.85) 

or: 

1

1 1

1
2 2

0
0

var ( )

2 ( )( ) ,

k k

k k l l

nt

s s k t t
k

k l t t t t
k l

H dB E H B B

E H H B B B B

 (13.86) 

using the “smoothing property” from Chapter 10, we obtain: 

1 1

2 2 2 2( ) ( ) ,
k k k k kk t t k t t tE H B B E H B B  (13.87)  

and so from the fact that H is adapted to the given filtration and B with independent 
increments such that: 

1 1 ,
k kt t k kE B B t t  (13.88) 

we obtain: 

1

2 2 2
1( ) ( ),  0,..., 1.

k kk t t k k kE H B B E H t t k n  (13.89) 

Using analog reasoning, we also have that all the double products in relation 
(13.86) have a zero expectation so that finally:  

1
2

1
0

0

var ( ).
nt

s s k k k
k

H dB E H t t  (13.90) 

To summarize, we have the following basic results: 

0 0

2
2 2

0 0 0 0

0,

var .

t t

s s s s

t t t t

s s s s s s

E H dB H dE B

H dB E H dB E H ds E H ds

 (13.91) 
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Similarly, we can prove the following proposition. 
 
Proposition 13.9 Under the above assumptions and if moreover the process H is 
square integrable, then the following process 

0
, 0

t

s sH dB t  (13.92) 

is a square integrable t -martingale with a.s. continuous trajectories and 
moreover the process 

2
2

0 0
, 0

tt

s s sH dB H ds t  (13.93) 

is a t -martingale with a.s. continuous trajectories.  
 

Let us also mention the following property: if X and Y are two simple predictable 
square integrable processes, then 

0 0 0 0
.

t t t t

s s s s s s s sE X dB Y dB E X Y ds E X Y ds  (13.94) 

13.5.2. Extension to general integrand processes  

As we know from the preceding section, we will use uniform convergence in 
probability to extend the preceding results to the class D of square integrable 
adapted càdlàg processes. 

 
For such a process X, there exists a sequence adapted simple square integrable 

processes , 0nH n  ucp converging to X such that in particular: 

20 0
lim .

t t n
s s s s

L
X dB H dB  (13.95) 

From this result, it follows that all the properties of section 13.5.1 remain valid in 
this general case.  
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13.6. Stochastic differentiation 

13.6.1. Definition  

On the probability space , , , 0 ,t Pt , let us consider an adapted 
standard Brownian motion B and two sufficiently smooth adapted processes a and b. 
 
Definition 13.9 The stochastic process  

( ), 0t t  (13.96) 

has as stochastic differential on [0, T] 

( ) ( ) ( ) ( )d t a t dt b t dB t  (13.97) 

if and only if: 

2 2

1 1

1 2 1 2

2 1

, : 0 :

( ) ( ) ( ) ( ) ( ).
t t

t t

t t t t T

t t a t dt b t dB t
 (13.98) 

13.6.2. Examples 

1) Result (13.44) gives: 

2

0

1 1
.

2 2

t

s s tB dB B t  (13.99)   

Consequently, we also have: 

2

2 1

1

2 2
2 1

1 1
( ) ( )

2 2

t

s s t t
t

B dB B B t t  (13.100) 

and from our new definition, it follows that: 

2 2 .t t tdB dt B dB  (13.101) 

2) From the definition of the stochastic integral, we know that: 

2

, , 1 ,
1

1

1

lim
n k n k n k

nt

t t t t
t n

k

tdB B B , (13.102) 
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,1 1 , , 2,..., ,...,n n k n nt t t t t  being a subdivision of order n of the interval 1 2,t t . 

 
Moreover, from the definition of the traditional Lebesgue integral, we obtain:  

2

, 1
1

1

, 1 ,
0

lim ( ).
n k

nt

t t n k n k
t n

k

B dt B t t  (13.103) 

Adding member-to-member relations (13.102) and (13.103), we obtain: 

2 2

, 1 ,
1 1

1

, 1 ,
1

lim
n k n k

nt t

t t n k t n k t
t t n

k

B dt tdB t B t B  (13.104) 

and so: 

2 2

2 1
1 1

2 1
t t

t t t t
t t

B dt tdB t B t B  (13.105) 

or in terms of stochastic differential: 

( ) ,t t td tB B dt tdB  (13.106) 

this formula also being different from the one of the traditional calculus. 

13.7. Back to Itô’s formula 

Using now the concept of stochastic differential, we will have a supplementary 
look to Itô’s formula. 

13.7.1. Stochastic differential of a product 

On the probability space , , , 0 ,t Pt , let us consider an adapted 
standard Brownian motion B and four càdlàg adapted processes 1 2 1 2, , ,a a b b  of class 
D and sufficiently smooth defining the two following stochastic differentials: 

( ) ( ) ( ) ( ), 1, 2.i i id t a t dt b t dB t i  (13.107) 

Then, we have as next result. 
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Proposition 13.10 (A. Friedman (1975)) The process 1 2  is differentiable (in 
Itô’s sense) and 

1 2 1 2 2 1 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .d t t t d t t d t b t b t dt  (13.108) 

Examples 

1) With 1 2( ) ( ) ( ),t t B t  we find back this known result (see relation 
(13.101)): 

2 ( ) 2 ( ) ( )d B t B t dB t dt . (13.109) 

2) Similarly, we can find result (13.106) concerning  

( ( )) ( ) ( ) ,d tB t tdB t B t dt  (13.110) 

with 

1 1 1

2 1 1

( ) ( ) 1, ( ) 0,

( ) ( ) ( ) 0, ( ) 1.

t t a t b t

t B t a t b t
  (13.111) 

13.7.2. Itô’s formula with time dependence 

For our applications, the main result is Itô’s lemma or the Itô formula, which is 
equivalent to the rule of derivatives for composed functions in traditional differential 
calculus, but now with a function f of two variables. 
 

Starting with 

( ) ( ) ( ) ( ),d t a t dt b t dB t  (13.112) 

let f  be a function of two non-negative real variables x, t such that 

0 0, , , .x xx tf C f f f C
 (13.113) 

Then the composed stochastic process 

f ( ( t), t), t 0  (13.114) 
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is also Itô differentiable and its stochastic differential is given by: 

2
2

2 2

( ( ), )

1
( ( ), ) ( ) ( ( ), ) ( ( ), ) ( )

2

( ( ), ) ( ) ( ).

d f t t

f f
t t a t t t f t t b t dt

x t x

f
t t b t dB t

x

 (13.115) 

Remark 13.4 Compared with traditional differential calculus, we know that in this 
case, we should have: 

( ( ), ) ( ( ), ) ( ) ( ( ), )

( ( ), ) ( ) ( ).

f f
d f t t t t a t t t dt

x t

f
t t b t dB t

x  (13.116) 

Therefore, the difference between relations (13.115) and (13.116) is the 
supplementary term  

1
2

2

2 2x
f ( (t), t)b2 (t)

 (13.117) 

appearing in (13.115) and which is zero if and only if in two cases: 

1) f is a linear function of x, 

2) b is identically equal to 0. 
 
Example 13.1 

1) For  given by: 

d (t) dB( t),

(0) 0.  (13.118) 

Using notation (13.112), we obtain: 

a(t) = 0, b(t) = 1. (13.119) 
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With the aid of Itô’s formula, the value of ( )B tde  is thus given by 

( ) ( ) ( )1
( ).

2
B t B t B tde e dt e dB t

 (13.120) 

As we can see, the first term is the supplementary term with respect to the 
traditional formula and is called the drift. 

13.7.3. Interpretation of Itô’s formula  

Itô’s formula simply means that the composed stochastic process 

( ( ( ), ) ( (0),0), 0f t t f t  (13.121) 

is stochastically equivalent to the following stochastic process: 

2

0

0

1
( ( ), ) ( ( ), ) ( ) ( ( ), ) ( )

2

( ( ), ) ( ) ( ), 0).

t

t x xx

t

x

f s s ds f s s a s f s s b s ds

s s b s dB s tf
  (13.122) 

13.7.4. Other extensions of Itô’s formula 

13.7.4.1. First extension 

It is possible to extend Itô’s formula in the following way. Let ( ), 0t t  
be an m-dimensional stochastic process: 

1( ) ( ), , ( ) 'nt t t   (13.123) 

with every component having a stochastic differential given by: 

( ) ( ) ( ) ( ), 1,...,i i id t a t dt b t dB t i m . (13.124) 

Then, it can be shown that the stochastic differential of the one-dimensional 
process: 

( ), , 0f t t t , (13.125) 
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with f being a real function of m+1 variables: 

1( , ) ( , , , )nf t f x x tx  (13.126) 

satisfying the following assumptions: 

0 0, , 1,..., , , , 1,..., ,m m
i i jx x x tf C f i m f i j m f C  (13.127) 

exists and is given by 

2

1 , 1

1

( ),

1
( ), ( ) ( ), ( ), ( ) ( )

2

( ), ( ) ( )

n n

i i j
i i ji i j

n

i
i i

d f t t

f f
t t a t t t f t t b t b t dt

x t x x

f
t t b t dB t

x

(13.128) 

Here, the supplementary time is given by 

2

, 1

1
( ), ( ) ( )

2

n

i j
i j i j

f t t b t b t
x x

 (13.129) 

13.7.4.2. Second extension 

The second possible extension also starts with an m-dimensional stochastic 
process 1( ) ( ), , ( ) 'nt t t  such that its dynamics are governed by the 
following stochastic differential: 

( ) ( ) ( ) ( ), 1, ,d t t dt t d t i ma b B  (13.130) 

a being a m-dimensional random vector of class L or D and b a stochastic matrix 
mxn whose elements are stochastic processes of class  L and B a n-vector of n 
independent standard Brownian motions. 
 

As in the preceding section, we are interested in the stochastic differential of the 
one-dimensional process: 

( ), , 0f t t t , (13.131) 
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with f being a real function of m+1 variables: 

1( , ) ( , , , )nf t f x x tx  (13.132) 

satisfying the following assumptions: 

0 0, , 1,..., , , , 1,..., ,m m
i i jx x x tf C f i m f i j m f C . (13.133) 

Under these assumptions, it is still possible to show the composed stochastic 
process ( ), , 0f t t t  is Itô differentiable and that its stochastic differential is 
given by: 

2

1 , 1

, 1

( ),

1
( ), ( ) ( ), ( ) ( ),

2

( ), ( ) ( )

1
( ) '( )

2

n n

i ij
i i ji i j

n

ij j
i j i

ij ij

d f t t

f f
t t a t t t t f t t dt

x t x x

f
t t b t dB t

x

t bb t

 (13.134) 

Using matrix notation, we can rewrite this last expression in the form: 

2

1
( ), ( ), grad ( ) ( ) tr( ')( ) ( ) ,

2

( ) ( ) .
i j

f
d f t t t t dt f t d t t t dt

t

f
t t

x x

xx

xx

bb f

f

 (13.135) 

Here, the supplementary time is given by 

1
tr( ')( ) ( )

2
t t dtxxbb f  (13.136) 

13.7.4.3. Third extension 

The last extension we will present now is related to the case of vector B whose 
components are n dependent standard Brownian motions. 
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This means that: 

, , , ( ) : ( ( ) ( ))( ( ) ( )) ( ).i i i i iji j s t s t E B t B s B t B s t s  (13.137) 

The matrix ijQ  is called the correlation matrix of the vector Brownian 
motion ( ), 0t tB B . 

 
If Q I  and (0) 0.B the vector Brownian motion ( ), 0t tB B  is called 

standard. 
 
In the case of a n-dimensional Brownian motion and with the same assumptions 

of the function f as above, Itô’s formula becomes: 

2

1
( ), ( ), grad ( ) ( ) tr( ')( ) ( ) ,

2

( ) ( ) .
i j

f
d f t t t t dt f t d t t t dt

t

f
t t

x x

xx

xx

bQb f

f
(13.138) 

13.7.4.4. Exercises 

1) Prove the following results: 

1 2

( ) ( ) ( ) 2

1
( ) ( ) ( ) ( 1) ( ) ,

2
1

ln ln , 0.
2

n n n

B t B t B t

dB t nB t dB t n n B t dt

da a adB a adt a

 (13.139) 

2) (i) Prove that: 

0 0
( ) ( ) ( ) .

t t
sdB s tB t B s ds  (13.140) 

(ii) Generalize to the following case (partial validity of the traditional 
integration by parts formula)  

0 0

( ) ( ) ( ) ( ) ( ) ( ),
t t

f s dB s f t B t B s df s  (13.141) 

f being a deterministic function with bounded variation.  
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3) Let B an n-dimensional standard Brownian motion and consider the following 
one-dimensional process 

2

: 1

( ), 0 ,

( ) ( ).
n

k
k

R R t t

R t B t
 (13.142) 

called the Bessel process of order n. 
 

Prove that: 

1

1 1
( ) ( ) .

2

n

i
i

n
dR B t dB t dt

R R
 (13.143) 

4) Calculate ( )B tE e . 

Solution 

The integral form of the Itô‘s formula leads to 

( ) ( ) ( )

0 0

1
1 ( ) .

2

t t
B t B t B te e dB s e ds  (13.144) 

Then, if: 

( )( ) B tX t E e , (13.145) 

we get: 

0

1
( ) 1 ( ) .

2

t

X t X s ds  (13.146) 

By derivation, we obtain: 

1
( ) ( ).

2
X t X t  (13.147) 
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Moreover, as X(0)=1, the traditional differential equation has as unique solution: 

2( ) .
t

X t e  (13.148) 

5) a and b being two deterministic functions of bounded variation, calculate the 
mean and the variance of the process X defined by 

( ) ( ) ( ) ( ),dX t a t dt b t dB t  (13.149) 

B being a standard Brownian motion. 
 

6) If the stochastic process ( ), 0t t  has the following stochastic 
differential: 

( ) ( ) ( ) ( ),d t a t dt b t dB t  (13.150) 

calculate Itô’s differential of ( )te  
 
Answer 

( ) ( ) 21
( ) ( ) ( ) ( ) .

2
t tde e a t b t dt b t dB t  (13.151) 

13.8. Stochastic differential equations  

13.8.1. Existence and unicity general theorem (Gikhman and Skorokhod (1969)) 

The problem is, in the deterministic case, as follows: given the following 
stochastic differential: 

0

( ) ( ( ), ) ( ( ), ) ( ),

(0) , . .

d t t t dt t t dB t

a s
  (13.152) 

( ), 0B B t t  being a standard Brownian motion on the complete filtered 
probability space  , , , 0 ,t t P , find, if possible, a stochastic process  

( ), 0,t t T  (13.153) 

satisfying in the interval [0, T] relations (13.152), under minimal assumptions on the 
two functions ,  from 0,T . 
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Relation (13.152) is called a stochastic differential equation (SDE). Gikhman 
and Skorokhod (1969) proved a general theorem of existence and unicity also given, 
in a more modern form, by Protter (1990). 

 
Under a relatively simple form, the main result is as follows. 

 
Proposition 13.11 (general theorem of existence and unicity) Let us consider the 
following SDE: 

0

( ) ( ( ), ) ( ( ), ) ( ),

(0) , . .

d t t t dt t t dB t

a s
 (13.154) 

under the following assumptions: 

(i) the functions ,  are measurable functions from 0,T  verifying a 
Lipschitz condition in the first variable: 

1 2

1 2 1 2

1 2 1 2

( , ), ( , ) 0, :

( , ) ( , ) ,

( , ) ( , ) ,

x t x t T

x t x t K x x

x t x t K x x

 (13.155) 

K  being a positve constant; 

(ii) on 0,T , the functions ,  are linearly bounded: 

( , ) (1 ), ( , ) (1 ),x t K x x t K x  (13.156) 

K being a positve constant; 

(iii) the r.v. 0 belongs to 2 , ,L P and is independent of the -algebra 
( ), 0, ,B t t T  then, there exists a solution belonging for all 0,t T , 

to 2 , ,L P , continuous and a.s. unique on 0,T . 
 
Remark 13.5 

1) The initial condition: 

0(0) ,x R  (13.157) 

naturally satisfies assumption (iii). 

2) This theorem can be extended in the case of a SDE on ,s s T , with as 
initial condition:  

( ) ss , (13.158) 
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the r.v. now independent of the -algebra ( ) ( ), 0,B s B s T and 
belonging to 2 , ,L P . 

3) It is also possible to prove that:  

2 2
0

0,

sup ( ) 1 ,
T

E t C E  (13.159) 

C being a constant depending only on K and T. 
 

In Proposition 8.1, the coefficients ,  are deterministic functions but it is 
possible to extend it in the stochastic case. Then, formally, we have: 

( , ) ( , , ), ( , ) ( , , ), , 0,x t x t x t x t x t T . (13.160) 

The initial condition (13.157) becomes: 

(0) (0),  (13.161) 

where 

( ), 0,t t T  (13.162) 

is the given initial process.  
 
The extension of Proposition 8.1 is now given. 

 
Proposition 13.12 (case of random coefficients) For the SDE: 

( ) ( ) ( ( ), ) ( ( ), ) ( ),

(0) (0),

d t d t t t dt t t dB t
 (13.163) 

where: 

(i) the processes ,  are measurable as functions from 0,T , 
adapted and lipschitzian in the first variable, i.e. with probability 1: 

1 2

1 2 1 2

1 2 1 2

( , ), ( , ) 0, :

( , ) ( , ) ,

( , ) ( , ) ,

x t x t R T

x t x t K x x

x t x t K x x

 (13.164) 
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K  being a positive constant; 

(ii) the processes ,  are measurable as functions from 0,T , 
satisfy a.s. the following condition:  

2 2 2 2( , ) ( , ) (1 ),x t x t K x  (13.165) 

K being a positive constant; 

(iii) the process ( ), 0,t t T  is of bounded variation, adapted and such 
that  

2

0,
sup ( )

T
E t  (13.166) 

then, there is a solution belonging for 0,t T , to 2 , , ;L P moreover, if 1 2,  
are two solutions, then they are stochastically equivalent, i.e.: 

1 2( ) ( ) 1, 0, .P t t t T  (13.167) 

Finally, if the process  is continuous a.s. on 0,T , then there exists a.s. 
unicity on 0,T : 

1 2
0,
sup : ( ) ( ) 0 0.

T
P t t t  (13.168) 

Remark 13.6 This theorem can be extended in the case of a SDE on ,s s T .  
 

The proofs of these two fundamental propositions use the method of successive 
approximations used in the deterministic case under the name of Piccard method: on 
0,T , we begin to use the following very rough approximation:  

0 0( )t  (13.169) 

and, by induction, on constructs on 0,T , the following sequence of stochastic 
processes ( ), 0n n t n  is defined by 

1 0

0 0

( ) ( ), ( ), ( ).
t t

n n nt s s ds s s dB s  (13.170) 
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Then, it is possible to show (see, for example, Friedman (1975)) that the 
sequence ( ), 0n n t n  converges uniformly a.s. on 0,T  towards the 
stochastic process ( ),0t t T , which is a solution of the considered SDE 
(13.163). Using assumption (13.164), Friedman (1975) also proved the a.s. unicity. 

13.8.2. Solution of stochastic differential equations 

Let us consider the following general SDE 

( ) ( ) ( ( ), ) ( ( ), ) ( ),

(0) (0),

d t d t t t dt t t dB t
 (13.171) 

where ( ), 0B B t t  is a standard Brownian motion on , , , 0 ,t Pt . 
 
The general procedure to find the process ( ), 0,t t T solution of this 

SDE under the assumptions of Proposition 13.12 is to try to put this SDE in its 
canonical form, that is to say 

0

( ) ( ) ( ) ( ),

(0) ,

d t a t dt b t dB t
 (13.172) 

with known a and b functions or stochastic processes. If so, the unique solution of 
the considered SDE takes the form: 

0

0 0

( ) ( ) ( ) ( ).
t t

t a s ds b s dB s  (13.173) 

More generally, we can look for a transformation f in two variables x and t, 
monotone in t satisfying the assumptions of Itô’s lemma and such that: 

( ), ( ) ( ) ( )df t t A t dt B t dB t  (13.174) 

In this case, we obtain:  

0 0

( ), (0),0 ( ) ( ) ( )
t t

f t t f A s ds B s dB s  (13.175) 

where we find by inverse transformation in variable x the form of ( ), 0, .t t T   
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13.9. Diffusion processes 

Let us consider the SDE: 

0

( ) ( ( ), ) ( ( ), ) ( ),

(0) ,

d t t t dt t t dB t
  (13.176) 

under the assumptions of Proposition 13.12.  
 
The solution ( ), 0,t t T  of this SDE is called a diffusion process or Itô 

process. 
 
Let s and t be such that: 0 s t T  and suppose that ( )s x . 
 
From the theorem of existence and unicity, we know that on the interval ,s T  

there exists only one process solution, noted ,x s , of the SDE (13.176) such that  

, ( )x s s x . (13.177) 

So it is clear that, setting ( )x t , we have the Markov property for the -
process in continuous time, which is of course generally non-homogenous. 

 
More precisely, we have the following propositions. 

 
Proposition 13.13 Under the assumptions of Proposition 13.12 and if, for each t, 

t  represents the -algebra generated by 0  and the set ( ), )B s s t , then the 
a.s. unique stochastic process  solution of (13.176), satisfies a.s.: 

( ) ( ) ( ) ( ( , ( ), , ))sP t A P t A s p s s t A  (13.178) 

for all t>s and for all Borel set A. 
 
Proposition 13.14 The function of 0,1  defined by relation 
(13.178) satisfies the following properties: 

(i) for all fixed s, x, t, p(s, x, t) is a probability measure on ; 

(ii) for all fixed s, t, A, p(s, t, A) is Borel-measurable; 

(iii) the function p satisfies the Chapman-Kolmogorov equations: 

0 , , :

( , , , ) ( , , , ) ( , , , ).

R

s t x R A

p s x t dy p t y A p s x A  (13.179) 
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(iv) the process solution ( ), 0s s  is a Feller process; i.e. for all 
continuous bounded function of , the application  

( , ) ( ) ( , , , )s x f y p s x s t dy  (13.180) 

is continuous. 

(v) the process solution ( ), 0s s  satisfies the strong Markov property, 
i.e. condition (13.178) but where s and t are replaced by stopping times.  
 
Remark 13.7 

a) If the drift and the diffusion coefficient are continuous functions, it can be 
shown that: 

(i) 

0

0, 0, :

1
lim ( , , , ) 0,
h

y x

t x R

p t x t h dy
h

 (13.181) 

(ii) 

0

2 2

0

0, 0, :

1
) lim ( ) ( , , , ) ( , ),

1
) lim ( ) ( , , , ) ( , ),

h
y x

h
y x

t x R

a y x p t x t h dy x t
h

b y x p t x t h dy x t
h

 (13.182) 

For the applications of such processes in finance, it is interesting to give the 
interpretations of these last properties: 

1) the probability for the process ( ), 0s s  to have a jump of amplitude 
more then between t and t+h is ( ).o h  Consequently, the process ( ), 0s s  
is continuous in probability; 

2) properties a and b can be rewritten as follows: 

2 2

) ( ) ( ) ( ) ( , ) ( ),

) ( ) ( ) ( ) ( , ) ( ).

a E t h t t x x t h o h

b E t h t t x x t h o h
 (13.183) 
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Consequently, drift  gives the rate of the conditional mean of the increment of 
the diffusion process on the infinitesimal time (t,t+h) interval and the square of the 
diffusion coefficient of diffusion , the conditional variance of this increment as 
the square of the mean is of order ( ).o h  
 

b) If the function p has a density p', then it is a solution of the partial differential 
equation of Fokker-Planck: 

2

2

' 1
( ( , ) ') ( ( , ) ') 0.

2

p
x t p x t p

t x x
 (13.184) 

Example 13.2 For the Ornstein-Uhlenbeck-Vasicek process defined by the SDE 
(see later in section 15.3.1) 

0

( ) ( ( )) ( ),

(0) .

d t a b t dt dB t

 (13.185) 

it can be shown that: 

21
( )

21
'( , , , ) ,

2

t
t

x M
V

t

p s x t y e
V

 (13.186) 

,t tM V  representing respectively the mean and variance of ( )t  whose explicit 
forms will be given in Chapter 15. 


